

Fluid pressure mostly drives aseismic motion: Insights from a controlled in-situ experiment at meter-scale in limestone

Louis De Barros1

Laure Duboeuf¹, Frédéric Cappa^{1,2}, Yves Guglielmi³, Anne Deschamps¹

¹ Université Côte d'Azur, CNRS, OCA, IRD, Géoazur, 06560 Sophia Antipolis, France; ² Institut Universitaire de France, Paris, France; ³ Lawrence Berkeley National Laboratory, Earth and Environmental Science Area, Berkeley, CA 94720, USA

Brawley, CA

Fluid and Seismicity: a complex relationship

 Fluids are known to trigger seismicity,

BUT:

- Example of Brawley
 Geothermal field
 (California, US; Wei et al, 2015)
- → Triggering mechanisms not simple

Fluid and seismicity: main questions

What is the underlying mechanisms behind fluid-triggered earthquakes?

- → How does a fault respond to a fluid pressure perturbation?
- → Does the seismicity allow for a direct mapping of the fluid flow?

Meter-scale: bridging the gap in observations

- Controlled processes (stress, pressure,...)
- Near field monitoring

- Full complexity of the natural processes
- Lack of hydromechanical context near the sources

Experimental principle

- Idea: reactivate a well-identified geological structure with fluid pressure
- A 2 m long part of a borehole (containing a few structures) is isolated
- Fluid injection into those structures

Experimental context

- Gallery at 300 m depth, in the Deep underground laboratory (Rustrel, 84, France)
- Fractured limestone in the extended damage zone of a kilometric faults
- 20 m long boreholes to access the test areas and for the monitoring sensors

Monitoring sensors

- > 10 areas have been tested.
- Monitoring at the injection point:
 - > Flow rate
 - > Fluid pressure
 - > 3D deformation
- Dense monitoring network at a few meter distance
 - > Accelerometers (10Hz-5 kHz)
 - ➤ Geophones (10 Hz-1kHz)
 - ➤ Acoustic sensors (1Hz-10 kHz)
 - > Tiltmeters

Overviews on hydraulic/seismic data

- ➤ Wide range of permeability
- > Seismicity:
 - Occurred after a pressure threshold (FOP)
 - > 250 events with magnitude between -3.5 and -4.2
 - Uneven distribution among tests
 - No seismicity close to the injection points
- Hydro-mechanical failure is observed for all tests
 - => Aseismic failure?

Aseismic motion dominates

- ➤ Seismic budget: more than 98% of the deformation is aseismic
- > In particular:
 - aseismic motion at the injection point
 - Some tests are totally aseismic

- > McGarr (2014): Mo=μ ΔV
- Comparion with other scales (from lab to reservoir)

=> Discrepancy for low injected volume ?

Location and structural heterogeneities

Location highlights particular structures (confirmed by mechanisms)

- Seismicity usually not on the injected structures
- Distribution of seismicity depends on the density of fractures

Fluid diffusion? Stress transfer?

Distance Vs Time (R-T plot):

- Events clustered in time, scattered in space
- ⇒ stress transfer
- Overall increase of distance with injection time
- ⇒ Fluid diffusion

Conclusions et scenario?

- Fluid pressure mainly induces aseismic motion
- Seismicity is not directly induced by fluid pressure, but by the aseismic motion through stress transfer
- Dual behavior between fluid diffusion and stress transfer
- => Seismicity is only an indirect probe for fluid monitoring

