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Fluid and
Seismicity : a
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* Fluids are known to
trigger seismicity,
BUT:
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Fluid and seismicity: main questions

What is the underlying mechanisms
behind fluid-triggered earthquakes?

—> How does a fault respond to a fluid pressure perturbation?

— Does the seismicity allow for a direct mapping of the fluid flow?



(stress, pressure,...)

Meter-scale:
bridging the gap in observations

Controlled processes

Near field monitoring

Meter-scale

Full complexity of the
natural processes

Lack of hydromechanical
context near the sources



20m

* |dea: reactivate a well-identified

e A2 mlong part of a borehole (containing

Experimental principle

Gallery wall

Water injection

(pressure increase)
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geological structure with fluid pressure

a few structures) is isolated

* Fluid injection into those structures




Experimental context
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Gallery at 300 m depth, in the Deep underground laboratory (Rustrel, 84, France)
Fractured limestone in the extended damage zone of a kilometric faults
20 m long boreholes to access the test areas and for the monitoring sensors



Monitoring sensors

» 10 areas have been tested.
280 - ’ » Monitoring at the injection
S point:
> Flow rate
» Fluid pressure
» 3D deformation
» Dense monitoring network at a
few meter distance
» Accelerometers (10Hz-5 kHz)
» Geophones (10 Hz-1kHz)
» Acoustic sensors (1Hz-10 kHz)
» Tiltmeters




Overviews on
hydraulic/seismic data

» Wide range of permeability

» Seismicity:

» Occurred after a pressure

threshold (FOP)

250 events with magnitude
between -3.5 and -4.2

Uneven distribution among
tests

No seismicity close to the
injection points

>

» Hydro-mechanical failure is
observed for all tests
=> Aseismic failure?
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Aseismic motion
dominates

» Seismic budget: more than
98% of the deformation is
aseismic

» In particular:

» aseismic motion at the
injection point
» Some tests are totally

aseismic

Seismic moment (N.m)

Laboratory experiments (cm-scale) (Goodfellow et al., 2015)
In situ experiments (m-to-dam-scale) - This study

In situ experiments (m-to-dam-scale) (De Barros et al., 2016)
Hydraulic fracturing (hm-to-km-scale) (Maxwell, 2013)
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Injected fluid volume (m3)

» McGarr (2014): Mo=u AV

» Comparion with other scales (from lab to
reservoir)

=> Discrepancy for low injected volume ?
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Location and structural
heterogeneities

Depth (m)
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* Location highlights
particular structures
(confirmed by
mechanisms)

200 o
e Seismicity usually not
160 on the injected
- structures
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{180 e« Distribution of
seismicity depends on
the density of fractures
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Distance to the injection well {m)
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Fluid diffusion? Stress transfer?

Distance Vs Time (R-T plot):
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e Events clustered in
time, scattered in
space

— stress transfer

e Qverall increase of
distance with
injection time

— Fluid diffusion
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=> Seismicity is only an indirect probe for fluid monitoring

Conclusions et scenario?

Fluid pressure mainly induces aseismic motion

Seismicity is not directly induced by fluid pressure, but by the
aseismic motion through stress transfer

Dual behavior between fluid diffusion and stress transfer
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